Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644.

نویسندگان

  • M C Nowycky
  • A P Fox
  • R W Tsien
چکیده

A large-conductance calcium channel in chicken dorsal root ganglion neurons was studied with patch-clamp recordings of unitary currents. In addition to the conventional pattern of Ca-channel gating previously described in neurons ("mode 1"), we observed a different form of gating behavior ("mode 2"). Unlike the brief (approximately equal to 1 ms) openings in mode 1, mode 2 openings tend to be longer (greater than 10 ms) and often outlast the test pulse. In mode 2, the probability of channel openness (P) is high at relatively negative potentials where P in mode 1 is low. Mode 2 activity appears much less often than mode 1 activity in the absence of drug. However, the balance is strongly shifted in favor of mode 2 by the dihydropyridine Ca agonist Bay K 8644, an effect that underlies a marked enhancement of Ca-channel activity. This is the first evidence for dihydropyridine control of neuronal Ca-channel function at the single-channel level. Sweeps showing mode 1 or mode 2 gating appeared interspersed with sweeps with no openings, during which the channel was unavailable for opening ("null mode" or "mode 0"). Two approaches showed that switching between all three modes occurred on a time scale of seconds: (i) channels tended to remain in the same mode from one sweep to the next, with pulses at 0.25 Hz; and (ii) steady depolarizations in Bay K 8644 produced clusters of mode 2 openings lasting several seconds. Changes in the rates of switching might be important in neurochemical modulation of Ca channels. Bay K 8644 and other dihydropyridine Ca agonists might be useful experimental tools for manipulating transmitter release, neurite extension, and other neuronal functions dependent on intracellular Ca.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dihydropyridine (Bay k 8644) that enhances calcium currents in guinea pig and calf myocardial cells. A new type of positive inotropic agent.

Bay k 8644 is a structural analog of nifedipine with positive inotropic activity. The mechanism of drug action was evaluated by measuring the effects of Bay k 8644 on twitch tension, action potential configuration, and calcium channel currents in myocardial cells. Bay k 8644 increases twitch tension in guinea pig atria without changing the time course of tension development. The drug does not o...

متن کامل

Unitary behavior of skeletal, cardiac, and chimeric L-type Ca2+ channels expressed in dysgenic myotubes

Skeletal and cardiac dihydropyridine receptors function both as voltage-dependent L-type calcium channels (L-channels) and as critical proteins that trigger calcium release from the sarcoplasmic reticulum in muscle. In spite of these similarities, skeletal L-channels exhibit a markedly slower activation rate than cardiac L-channels. We investigated the mechanisms underlying this difference by c...

متن کامل

Calcium channel activation and self-biting in mice.

The L type calcium channel agonist (+/-)Bay K 8644 has been reported to cause characteristic motor abnormalities in adult mice. The current study shows that administration of this drug can also cause the unusual phenomenon of self-injurious biting, particularly when given to young mice. Self-biting is provoked by injecting small quantities of (+/-)Bay K 8644 directly into the lateral ventricle ...

متن کامل

Characterization of dihydropyridine-sensitive calcium channels in rat brain synaptosomes.

We examined the effects of dihydropyridine Ca2+-channel agonists on synaptosomal voltage-dependent Ca2+ entry and endogenous dopamine release. The (-) isomer of Bay K 8644 and the (+) isomer of Sandoz compound 202-791 were 100-1000 times more potent than their respective opposite enantiomers in enhancing Ca2+ uptake and dopamine release from striatal synaptosomes. The active isomer of each of t...

متن کامل

Alterations in dihydropyridine receptors in dystrophin-deficient cardiac muscle.

The deficiency of dystrophin, a critical membrane stabilizing protein, in the mdx mouse causes an elevation in intracellular calcium in myocytes. One mechanism that could elicit increases in intracellular calcium is enhanced influx via the L-type calcium channels. This study investigated the effects of the dihydropyridines BAY K 8644 and nifedipine and alterations in dihydropyridine receptors i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 82 7  شماره 

صفحات  -

تاریخ انتشار 1985